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Abstract
Cloud-native network functions (CNFs) can significantly reduce operating costs for
mobile operators, not just through their ability to be hosted in public clouds, but also
since their enabling technology, containers, use compute resources more efficiently
than alternatives. Kubernetes is the biggest technology in container orchestration and
has the potential to bring many benefits to mobile networks, however, the existing
work that looks at containerising mobile network functions and orchestrating them
with Kubernetes does not make good use of the tools that it provides for free. In this
project, I present the design, partial implementation and evaluation of 4GKube for
orchestrating the 4G core network (EPC) with Kubernetes. I also present two novel
attacks against Kubernetes and demonstrate that they won’t work in the context of
4GKube.
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Chapter 1

Introduction

The state of the art in networking is moving from virtual network functions (VNFs)
to cloud-native network functions (CNFs), a new paradigm relying on the concept of
containers. These bring increased operational savings over their predecessors through
more efficient use of compute resources and easier deployment. Mobile network op-
erators are keen to tap into the economies this trend brings as evidenced through a
growing number of efforts to containerise mobile network components [40, 53, 4, 5].

One area where containerisation could be of particular benefit is the mobile core net-
work. The core network comprises a set of services that handle user management and
connecting users to each other and the Internet. A diverse set of services such as this
with varying user load and high-reliability requirements is a good fit for container or-
chestration tools such as Kubernetes since it comes with many built-in features to deal
with redundancy, auto-scaling services and networking between services.

In this paper, I introduce 4GKube, a new design for orchestrating a 4G mobile core
network with Kubernetes that utilises its features to minimise development cost and
increase system performance. A partial implementation of this design is presented and
made fully open-source to enable further research on this topic. The advantages of
taking the approach in this design include auto-scaling of the Mobility Management
Entity (MME) with very little work, ease of deployment due to an existing pool of
public knowledge, self-healing clusters and access to a large selection of open-source
software to help administrate the cluster. I also propose two novel information leakage
attacks on Kubernetes and show that they are not feasible in the mobile core network
context.

Despite there being many existing efforts to containerise the core network, many of
them do not make full use of the potential of containers. For example, [40] places
all core network components into a single container, preventing independent scaling
and redundancy of components. The project openair-k8s[5] gets closer to a use-
ful deployment of the EPC on Kubernetes but ignores some core Kubernetes features
such as dynamic application discovery through services and built-in auto-scaling of
applications.

The remainder of this paper is structured as follows. Section 2 lays out a detailed back-

1



Chapter 1. Introduction 2

ground to both mobile networks and Kubernetes. Section 3 introduces the design of
the EPC over Kubernetes. Section 4 follows with an account of the implementation of
this design. Section 5 evaluates the design and presents a framework for evaluating an
eventual implementation. Section 6 introduces the novel attacks as well as some Ku-
bernetes security advice relevant to deploying a mobile core network. Finally, section
7 concludes.



Chapter 2

Background

2.1 Mobile Networks

Mobile networks are the high-speed, long-range networks that our mobile devices rely
on for Internet connectivity and communication. The architecture and specification of
these networks are standardised by a body named 3GPP to enable network operators to
interact together and equipment manufacturers to build compatible devices. Generally,
the architecture for a mobile network consists of two parts; the core network and the
radio access network (RAN). This is illustrated in Figure 2.1.

The RAN is composed of user equipment (UEs) and base stations which are named
eNodeB in 4G and gNodeB in 5G. The core network has a more complex architecture
depicted in Figure 2.2.

The RAN is responsible for managing the wireless portion of the network while the
core network is responsible for user management, connecting users to the Internet and
each other alongside other administrative functions such as billing.

Figure 2.1: Architecture overview of a modern mobile network

3



Chapter 2. Background 4

Figure 2.2: Main EPC services and their communication

2.1.1 Evolved Packet Core in 4G

At the time of writing, the most prevalent generation of mobile network in the UK
is 4G. 3GPP first specified 4G networks in their Release 8 [1] in 2008. The core
network design for 4G networks is called the Evolved Packet Core (EPC), and many
mature open source projects [6, 22, 35, 48, 12] have implemented it. I outline the main
network functions below, and Figure 2.2 illustrates their communication.

• MME (Mobility Management Entity)

The MME is responsible for many functions including authentication, manage-
ment of idle UEs, handling the initial attach of a UE to the network and lawful
interception of signalling.

• HSS (Home Subscriber Server)

The HSS is a database for user and subscription information. It contains some
functionality to do with authentication, authorisation and call/session establish-
ment.

• S/P-GW (Serving Gateway and Packet Data Network Gateway)

In the 3GPP specification, these are two different components, but many im-
plementations, including OpenAirInterface, merge them into one component.
Together they handle connection from the mobile network to external networks
such as the Internet. 3GPP Release 14, splits these into separate control and
user plane components, implemented in OpenAirInterface as the S/PGW-C and
S/PGW-U.

While there are other network functions in the EPC architecture, they are not crucial to
the running of a mobile network and the open-source implementation I work with for
this project, OpenAirInterface (OAI), does not implement them.
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2.1.2 4G and 5G

The first 5G specification came in Release 15 [2] in late 2018 and features a new core
network design named 5G core (5GC). EPC and 5GC are very different. 5GC uses a
service-based mesh architecture, which means that each function exposes a standard
API which can be called by any other function. Each function’s responsibilities are also
now more focused when compared to the larger functions in the EPC architecture. An
architecture with many services that each have few responsibilities is called a “micro-
service” architecture.

2.1.3 Virtualised and Cloud-native network functions

Traditionally, specialised single-purpose hardware would implement network func-
tions such as the MME. This approach proved to be costly and inflexible as each new
network function would require new hardware. In 2012, a white paper from ETSI
[13] introduced network function virtualisation (NFV) to solve this problem. NFV
moves network function implementations entirely into software, meaning that com-
modity hardware and virtual machines (VMs) are sufficient to run them. This shares
resources more efficiently and enables network architectures to be changed more eas-
ily.

More recently, the focus has turned to cloud-native network functions (CNF). These
also fall under the umbrella of NFV but are implemented with containers instead of
virtual machines. Containers share the underlying operating system, which means
they make more efficient use of resources than VMs. They can also be easier to deploy
than VMs due to the rise of container image repositories and less underlying software
required to make them work.

2.2 Kubernetes

Kubernetes is a container orchestration platform that offers features such as load bal-
ancing, self-healing clusters and scalability across many nodes. According to a 2019
report by a cloud monitoring company Datadog [16], Kubernetes is run in 45% of con-
tainerised environments, meaning it is the largest player in the container orchestration
market.

For organisations looking to move to containerised infrastructure, Kubernetes would
be a natural choice. Kubernetes can be used to orchestrate any application, making
it applicable to managing network functions as well as more traditional cloud appli-
cations such as web servers. Researchers have been studying containerised network
functions since at least 2015 [15] and the use of containers could bring many benefits
to the implementation of a mobile network core.

2.2.1 Kubernetes concepts

Kubernetes introduces many new concepts, and I have used their names liberally through
this dissertation. Some important ones are defined below. Figure 2.3 illustrates how
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Figure 2.3: How Kubernetes concepts relate to each other

they relate together.

• Clusters

The cluster is the name for an entire Kubernetes instance including all nodes,
pods and system functions.

• Nodes

A node in a Kubernetes cluster is a physical machine that forms part of the
cluster.

• Pods

Pods are the smallest unit that Kubernetes can schedule (match to a node). They
can contain one or more containers as well as the storage mounts for them and
network interfaces. A pod corresponds to a virtual or logical host.

• ReplicaSet

A ReplicaSet is an object that ensures a certain number of pods are running at
any given time.

• Deployments

A deployment specifies an update to the state of some pods or a ReplicaSet. It is
the standard way of creating and updating sets of pods.

• Services

A service in Kubernetes exposes a set of pods under a DNS name. Each pod in
Kubernetes can, by default, reach every other pod on the network through unique
IP addresses. A service can expose a set of pods and load balance between them
through a single DNS name. A service can also expose these pods outside of the
cluster.

• Controllers
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A controller in Kubernetes has some desired state and attempts to bring the actual
state of the world closer to this desired state through a control loop. There are
controllers in Kubernetes for everything from ensuring ReplicaSets function to
managing storage mounting. It is also possible to write a custom Kubernetes
controller.

2.3 Related work

A significant component of this work focuses on scaling the MME using Kubernetes’
built-in features. This is due to other works previously identifying the MME as a
bottleneck [8, 7, 11, 49]. Accordingly, many of the related works below are to do with
scaling the MME. Some of the works are more generally to do with orchestrating the
EPC with containers.

In [7], the authors split the MME into micro-services and orchestrate them using Ku-
bernetes. They also create an application-layer load balancer specific to the MME. My
work is different as I do not split the MME into microservices; instead, I remove the
state from it while leaving it as a monolith. I also use the built-in Kubernetes load
balancer reducing development cost.

The authors of [11] propose a system, SCALE, that enables virtualisation and scaling
of the MME. Their system does not rely on an orchestrator such as Kubernetes; instead,
it manages its pool of MMEs itself. A later system from the same group, ECHO [41],
builds on this work by extending the distributed nature of SCALE to the entire core
network. That work changes the EPC much more than my work and handles its own
distributed challenges instead of relying on off-the-shelf solutions such as Kubernetes.

In [49], the authors implement an MME that scales by using an architecture described
in a previous paper [50]. The architecture removes the state from the MME and stores
it in a separate database. This database is then used by processing nodes that take the
place of the MME. I have similarly scaled the MME; however, this paper is platform
agnostic and does not refer to the enabling technologies I have used.

The project openair-k8s [5], whilst not published academically, is close in scope
to mine. It containerises each of the EPC components and orchestrates them using
Kubernetes. The project does not, however, utilise Kubernetes’ full potential since it
relies on static IP addresses and single instances of each network function. A lone
developer, Christopher Agidun, builds a similar system to openair-k8s, documented
in a blog post [4]. His system uses the Open5GS [35] EPC implementation instead of
OpenAirInterface.

There are multiple proprietary implementations of a containerised mobile core network
[31, 53]; however, none of them has published their implementations; therefore I am
unable to compare my project to them.



Chapter 3

4GKube Design

3.1 Scope

3.1.1 Focus on the Core network

In this dissertation, I will be focusing on the core network. There are a few reasons for
this, laid out below.

• The core network is composed of a greater number and variety of services than
the RAN, something which fits nicely with a container orchestration model.

• The core network could benefit most from scalability as it is the single point of
contact for many base stations. Scalability is a core feature of Kubernetes.

• A RAN requires physical components by definition which do not always con-
tainerise well, and so there has been less interest in cloud-native network func-
tions for base-stations. A potential cluster would also have to disregard UEs as
the operator does not deploy these.

3.1.2 Reasoning for using EPC

I chose to base this project on the EPC instead of the 5GC for a few reasons. Firstly, the
projects that implement the EPC are much more mature and easy to work with than the
few projects implementing 5GC. The one project I found implementing release 15 and
higher, free5GC [23], had its first standalone 5G release in October. OpenAirInterface
has releases dating back to 2016.

Despite the EPC being older than 5GC, deploying it on Kubernetes presents many of
the same motivations and challenges that deploying 5GC would. For example, Kuber-
netes provides auto-scaling capabilities independent of the deployed application.

Another factor in the decision to use the EPC is the current high usage of 4G networks.
5G networks are still very new, and 4G will take a long time to disappear meaning that
work on the EPC is still significant. On top of this, the 5G specification provides the

8
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ability to operate alongside existing 4G core networks by only deploying a 5G RAN
that connects to them.

3.1.3 Reasoning for using Kubernetes

Kubernetes is not the only container orchestration solution available; however, it is the
most popular. Using the most popular option means that this project is more likely to be
directly applicable to real-world implementations of cloud-native core networks. There
are several direct and indirect competitors to Kubernetes, and I lay out the reasoning
for choosing it over some of the most popular ones below.

Docker Swarm [17] is an orchestration tool built into Docker that unites multiple nodes
into a single cluster for running containers. Docker Swarm is the tool that is most
similar in scope to Kubernetes in this list; however, it a simpler tool and has a less
complete feature set than Kubernetes. For example, Docker Swarm does not provide
an auto-scaling capability, only a manual scale command. Auto-scaling is a crucial
feature for this project, and so Swarm was not chosen.

OpenShift [25] is a container orchestration platform built on top of Kubernetes by Red
Hat. It contains all the features of Kubernetes, being based on it, but includes opin-
ionated choices for other tools that come as part of managing a cluster such as image
registries, networking infrastructure and logging. openair-k8s [5], the project that
my implementation is based off, is designed to be deployed on OpenShift. I didn’t use
OpenShift for this project because it brings few benefits over using vanilla Kubernetes
and is a less-open project with a smaller community.

OpenStack [46] is a tool used to manage pools of compute, storage and networking
resources meaning that in general, it operates at a lower level than Kubernetes. Open-
Stack is generally more concerned with managing the underlying hardware than the
applications on top of it; OpenStack can even be used to deploy a Kubernetes cluster.
OpenStack wasn’t chosen as the substrate for this deployment since it is much more
low-level and requires more configuration and knowledge than managing a Kubernetes
cluster does.

3.2 Challenges

The EPC specification assumes each component to be stateful, including the MME,
which poses a problem for the design. Having multiple MMEs behind a layer-4 load
balancer could cause different MMEs to serve a UE across two requests. If their state
concerning that UE differs, then that could cause problems, potentially forcing the UE
to perform an expensive re-attach operation or lose service. Similarly, a scale-down
operation from the auto-scaler could permanently delete state from the core network.

The EPC’s design does not connect every component like the 5G mesh design. Instead,
the EPC has interfaces defined between individual components, each of which is usu-
ally on a unique subnetwork. For example, the S6a interface connects the MME to the
HSS. The Kubernetes networking model interconnects all pods on the same network
so that they can all communicate by default which is contrary to the EPC design. To
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resolve this, extra software to allow multiple networks within a cluster will have to be
deployed, such as Multus CNI [28].

3.3 Goals

Deploying a mobile core network on Kubernetes only makes sense when using Kubernetes-
specific features that are not present or are hard to implement in more traditional de-
ployment methods. Kubernetes has many features, but the most important ones for this
design are outlined below as goals.

• Self-healing cluster.

Kubernetes can recognise if a pod has crashed or if the node it is running on is
suffering a failure. In either of these cases, Kubernetes can re-schedule the pod,
thereby automatically healing the cluster.

• Auto-scaling.

Kubernetes can horizontally scale a service by increasing or decreasing the num-
ber of instances of it running. It can do this by monitoring the resource usage of
each instance and changing the number of instances if this usage passes certain
thresholds.

• Function discovery.

In traditional EPC deployments, the IP address of each network function has
to be known ahead of time. Kubernetes obviates this need through Services.
Services enable load balancing amongst a group of pods by putting them all
behind a single domain name within the cluster.

There are other requirements for this design due to being a core network deployment.
Below is a list of requirements ensuring that the mobile network still functions. Any
requirements to do with interconnecting to other mobile networks are left out.

• Two users connected to this core network should be able to make a phone call to
each other.

• A user connected to this network should be able to send an SMS to another user
on this network.

• A user connected to this core network should be able to access the Internet.

• A base station running outside of the cluster should be able to connect itself and
its connected user equipment to the core network.

Chapter 5 will assess whether the design meets these requirements as part of the eval-
uation.
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Figure 3.1: Architecture of EPC over Kubernetes system

3.4 Architecture

Figure 3.1 demonstrates the architecture of the system. Examining the diagram reveals
a few essential points. Firstly, I mapped the network functions within OpenAirInterface
to individual Kubernetes pods. The unit of scaling in Kubernetes is the pod, so if we
want individual network functions to be scalable, then there needs to be one function
per pod instead of having them all within one.

The double-headed arrows in the diagram represent connections between components.
The arrow between the HSS and MME means that these two components communi-
cate; however, the HSS cannot communicate directly with the S/P-GW since there is no
arrow connecting them. These connections follow the EPC design, and each operates
on a separate subnetwork.

Two MME interfaces are behind a service. These are the interfaces on which the MME
services requests. The MME does not have a service for the S6a interface since the
MME initiates all requests on this interface. The MME also gains a database, which is
where all the state of MME transactions will go. Removing the state enables the MME
to become a stateless processing unit as described in 3.5.

The HSS is also behind a service for the S6a interface. This service enables discovery
of the HSS without the MME having to hard-code its IP address. On start-up, the MME
will attempt to connect to the HSS, which in OAI would happen using its IP address;
this service obviates the need for that IP address, replacing it with a DNS name.
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The MME is replicated in this design, whereas in traditional deployments of the EPC,
it could only have one instance. The MME does the majority of the control-plane work
in the EPC, which is why I chose to replicate it. Other works have also identified
the MME as a bottleneck and attempted to improve its design [8, 7, 11, 49]. The
MME has a horizontal pod autoscaler (HPA) attached for this purpose. Without real
usage statistics, it is hard to decide on a suitable metric for the HPA. The metric will
most likely be CPU usage, but this could change with the data gained from a real
implementation.

The S/P-GW also has a HPA attached and sits behind a service. The S1-U service that
the S/P-GW uses will load balance across instances of the component, which means
that the S/P-GW needs to become stateless as the MME did. The S/P-GW instances
connect to the storage element to store their state. The S/P-GW is replicated in tra-
ditional deployments of the EPC as well, but the autoscaling and load-balancing are
specific to this implementation.

The interfaces to the RAN will need to be accessible by entities outside of the cluster.
External-facing services for the S1AP and S1-U interfaces enable this. A service in
Kubernetes becomes external-facing by setting the service type to be one of NodePort,
LoadBalancer or ExternalName. The exact type is unimportant to the design and
depends on how the network operator has configured the RAN. Kubernetes can expose
SCTP services, but some intermediate networks may drop SCTP packets if operating
on a public cloud so a tunnel over UDP/TCP may be needed.

3.5 Changes to the MME

The MME is a stateful component in the specification of the EPC, which can cause
problems as described in 3.2. Removing the state from the MME to make it into a
stateless processing unit solves these problems. The architecture accommodates this
through the addition of a database, which stores the state that the MME previously
would. In [49], the authors identify the state held by the MME, listed below.

• Authentication information

• Location information

• Routing information for UEs

• UE connection state (Deregistered, CONNECTED, IDLE)

• SCTP connection information

Removing this state from an MME implementation is not a trivial change, but is a
necessary component for automatically scaling the MME. In order to scale the MME
without Kubernetes, it would still be necessary to make the MME stateless. This
change would also have to be followed by creating solutions for monitoring MME load
and creating/tearing down instances of the MME. Kubernetes simplifies this process
greatly.
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3.6 Generalisation to 5GC

Unlike 4G, the 5G core network design takes into account VNFs and CNFs. As a
result, the architectural changes make applying the 4GKube design to 5G easier, as
seen below.

• Mesh architecture

The 5GC has a mesh architecture, meaning every service can talk to every other
service. In Kubernetes, the network model dictates that every pod should be
reachable from every other pod. Services are also discoverable from within the
cluster, following this paradigm.

• Micro-services

The move to micro-services in the 5G architecture means there is an increased
number of functions and a decrease in responsibility per function. This change
fits into the Kubernetes model well, as it is designed for orchestrating large num-
bers of functions.

• Stateless functions

3GPP Release 16 introduces the Unstructured Data Storage Function (UDSF) [3]
to the 5GC. This function is a cloud database that stores the state other functions
usually would. The UDSF enables other functions to become either stateless or
state-efficient, where the function keeps a cache of state but otherwise stores it
in the UDSF. Vendors such as Metaswitch and Ericsson [39, 21] are starting to
produce stateless implementations of the core network as a result. This move
to stateless functions means that changes to network function implementations
may not be necessary to orchestrate the 5GC with Kubernetes.



Chapter 4

Implementation

Due to time constraints, a complete implementation of the design in chapter 3 was not
possible. However, a port of openair-k8s [5] to vanilla Kubernetes and the Powder
platform has been accomplished. The following sections go into more detail about
exactly what has been accomplished, and the challenges faced when doing so.

4.1 Pre-existing work

Due to the increasing availability of open-source software and open platforms for re-
searchers, there was a large pre-existing body of work to build on.

4.1.1 Powder

Powder [43] is a testbed for wireless networks run by the University of Utah and pro-
vided for free to researchers across the world. It provides compute resources as well
as physical radio hardware to run experiments.

I chose Powder as the platform for this implementation for two reasons. Firstly, Powder
is a mature platform that is easy to work with, providing an online interface to control
experiments and a Python API for creating experiment profiles. Secondly, Powder
encourages repeatability in research since it instantiates each experiment completely
freshly, whether on a real PC or a VM. Powder’s profiles also help enable repeatability,
as described below.

A core concept in Powder is the idea of a profile. A profile contains experiment config-
uration including the hardware to be used, the software to install, and the disk images
to use. A user can also make their profile public for other researchers to build on. A
profile containing a Kubernetes set-up [36] already existed on Powder, and I was able
to build on it, as detailed in 4.2.

14
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4.1.2 EPC implementations

Many open-source projects [23, 22, 35, 48, 12] aim to provide a 3GPP-compliant im-
plementation of the mobile core network. At the time of writing, however, the project
that is the most mature and has the most industry support is OpenAirInterface [6].
OpenAirInterface (OAI) provides a 3GPP release-10 compliant implementation of the
MME, HSS and SPGW components of the core network as well as an implementation
of the RAN and a UE simulator.

4.1.3 openair-k8s

One open-source project called openair-k8s [5] has already looked at putting OAI
onto Kubernetes. Each network function in the core network is containerised and
placed into a Kubernetes pod. The eNB also runs in the same cluster as another pod.
Container images are built on Red Hat Enterprise Linux (RHEL) systems due to be-
ing based on Red Hat-supplied images. The project is designed to be deployed on
OpenShift, Red Hat’s proprietary container platform that is built on Kubernetes.

While my implementation was based primarily on this project, I had to modify it,
which I document in 4.3.

4.2 Creating a Powder profile

4.2.1 Existing profile

A profile to create a Kubernetes cluster [36] existed on Powder which I based my own
off. It instantiates an N-node cluster with an example micro-service application de-
ployed on it. Due to the age of the profile, it was using old versions of both Kubernetes
and Ubuntu, a problem since in the intervening time Kubernetes had become more
mature and added many features. The profile had no other features related to running
core networks.

4.2.2 Creating a profile

Creating a profile on Powder is required for running a custom experiment such as the
work I was attempting. A profile in Powder is created using a Python file which defines
resources through a library called geni-lib. Learning geni-lib is a challenge as the
documentation is only partially complete.

My Powder profile is in a public GitHub repository, a deliberate choice to allow others
to build on this work. Putting the profile on GitHub also has the advantage of updating
the Powder version with just a git push command. I summarise the features that I
built on top of the existing profile below.

• Deployment of OAI on Kubernetes.

OpenAirInterface is a mature implementation of the EPC and the one that I chose
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to base my deployment off. Section 4.3 describes the modification and deploy-
ment of it.

• Deployment of the Kubernetes metrics-server [27].

The metrics-server enables resource usage of pods to be monitored, something
that is necessary for auto-scaling of pods to occur. It was also pre-requisite for
the security experiments carried out in chapter 6.

• Option to run on VMs or real hardware.

Powder is an environment that is shared with other researchers around the world
and has finite resources. While developing the profile, it was important to use
resources conservatively to allow other researchers to use the testbed as well, so
I added the option to deploy the profile over virtual machines as a toggle.

• Public IPs assigned to nodes.

Public-facing IPs, combined with Kubernetes services, allows machines outside
of the cluster to communicate with pods running inside it. Allowing external
access is essential for my design since base stations run outside of the cluster.

• Upgrades to Kubernetes and Ubuntu.

I upgraded the operating system deployed on the nodes to enable accessing more
up-to-date packages for Kubernetes. Upgrading Ubuntu helped to make the ex-
perimental environment more representative of the state of the art, which may
affect results due to the use of a newer kernel.

• Upgrade Helm.

Helm is a package manager for Kubernetes and old versions required a service
account with administrator privileges to function, which was generally consid-
ered bad security practice. I upgraded the Helm version to one which did not
require this.

The biggest challenge unrelated to the features above was that the install script on the
master node was unable to get the number of nodes in the experiment. The install
script needs to know how many nodes are going to join the Kubernetes cluster so that
it can exit once they have all joined. The profile I was basing off did this by running a
command on the Powder administrator machine, ops.emulab.net, but when I ran it,
the SSH command failed. The command failed because my Powder SSH key was not
on the master node of the experiment since it was a personal key.

The correct way to get parameters from the instantiated profile, such as the number of
nodes, is by using a command called geni-get as documented in the Cloudlab Manual
[37]. Unfortunately, the command does not work as documented on Powder and I had
to use a script to replace it [42]. This script gets the parameters through a command on
the local machine, negating the need to SSH into another machine.

Figure 4.1 shows the profile options I built during instantiation of the profile.
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Figure 4.1: Instantiating the profile in Powder

4.2.3 Kubernetes cluster

Kubernetes does not enforce many specific components on the cluster administrator;
instead, it allows the administrator to make their own choices as to how to build their
cluster. In this way it acts more like an operating system than an application, meaning
that two Kubernetes clusters could be very different just as two installs of Linux could
be. Because of this, I had to make some design choices when building the Kubernetes
cluster.

The Kubernetes cluster was created with a tool called kubeadm [32]. I chose kubeadm
over alternatives such as kubespray [34] and kops [33] as it is generally considered
simpler and was already being used by the profile I based my own off.

A Kubernetes cluster relies heavily on a virtual networking fabric since each pod can
only communicate to the rest of the cluster through a virtual network. The networking
fabric I chose for this deployment is called flannel [14]. flannel is simple to deploy
and comes with support for the SCTP protocol built-in, on which the core network
relies. I had to modify the installation with an extra static plugin from the CNCF’s
example plugins repository [51]. This plugin was needed because openair-k8s relied
on assigning static IP addresses.

One issue I ran into when deploying flannel was that DNS queries were failing from
within pods. This bug was because the subnet kubeadm used to instantiate pods was
different from the default flannel subnet. This bug was hard to spot and was present
in the profile I based mine off.

4.3 Deploying OpenAirInterface on Powder

openair-k8s is a project to deploy each of the network functions present in OAI
as a container in a Kubernetes cluster. It was designed to be hosted in a proprietary
Kubernetes-based container management system called OpenShift [25]. Due to the
reasons set out in 3.1.3, I chose not to use OpenShift for this project, and so I had to
modify openair-k8s to run on vanilla Kubernetes.



Chapter 4. Implementation 18

4.3.1 Building container images

The first step in setting up the project was to build the container images. Since the
project has close ties with Red Hat, the base image for each container is a Red Hat
Universal Base Image (UBI), that is only accessible through a Red Hat Enterprise
Linux (RHEL) subscription. Thankfully, Red Hat provides a no-cost developer sub-
scription for individuals. Using the developer subscription, I installed RHEL on a
personal laptop and built the OAI images before uploading them to Docker Hub, a
free-to-use image hosting platform.

4.3.2 Configuration changes

Due to openair-k8s being a relatively new project and being based on OpenShift,
there was a series of configuration changes required to get the project to deploy suc-
cessfully on my Kubernetes cluster.

• Change the deployment configuration to get container images from my Docker
Hub profile instead of the cluster-hosted image repository used in OpenShift.

• Change the SSL certificate creation script to work with vanilla Kubernetes. The
MME and HSS were configured to communicate using TLS, but the certificate
creation script that came with openair-k8s did not work on my set-up. It did
not work because OpenShift comes with OpenSSL configuration files built-in,
but my Kubernetes environment did not. After creating a configuration file for
OpenSSL and modifying the script to use it this worked.

• Change the default network interface to be the one present on Ubuntu. In prac-
tical terms, this meant that the default interface on Red Hat’s development ma-
chines was called bond0 whereas on my Ubuntu machine it was called eth0.

4.3.3 Deployment

Due in part to the intended deployment environment not being vanilla Kubernetes and
in part to the immaturity of the project, there was an undocumented requirement for
the Multus container network interface (CNI) [28] to run the openair-k8s project.
Multus is a piece of software that enables multiple network interfaces to be attached
to each Kubernetes pod. This feature is necessary for an OAI deployment since each
network function has individual interfaces for each connection to another function.

I added a flag to the deploy script that can be enabled or disabled from the Powder
profile configuration screen to deploy my version of openair-k8s. When enabled, the
deploy script will install Multus and then deploy the OAI containers.

After deploying openair-k8s, I ran into a problem where the base station, which was
running inside the cluster, could not connect to the MME. The reason for this was that
the eNodeB was attempting to connect to the MME before it had started, and a tempo-
rary fix was to restart the eNodeB pod. This error was not a flaw in the implementation
as the eNodeB would eventually be run outside of the cluster and would be started
after the core network manually. If this was not the case, this could be fixed with an
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Figure 4.2: Architecture of MME within OpenAirInterface

InitContainer, which is a container that runs before other containers in a pod and
prevents them from running until it has successfully finished. An InitContainer
could run before the eNodeB that checks that the MME responds.

Putting the network functions behind services presented a problem since their pods
have multiple network interfaces attached. A service in Kubernetes has no concept
of network interface and just operates on the default network, meaning that to create
a service that uses a secondary network interface requires creating a new Kubernetes
object. There is discussion around adding this functionality to Kubernetes [29, 24],
however currently this functionality has to be implemented manually, and a few open-
source proofs-of-concept exist [26, 54].

4.4 Verifying deployment

Once openair-k8s was deployed to Powder, it was necessary to test that it worked
properly before changing any OAI code. This deployment would then form a baseline
against which to compare code changes. The tool I used to test the deployment was a
RAN simulator built by Jon Larrea Martı́nez of my research group [38].

Unfortunately, I could not get the simulator to connect to the network due to time
constraints.

4.5 Modification of MME

As described in the design of 4GKube, the MME state has to be removed and stored
in a separate database. The design of OAI helps simplify this change due to the way
each network function is architected. The architecture of the MME component in OAI
is illustrated in Figure 4.2.

OAI runs a thread for each interface of the MME and for each protocol used. These
threads can then send messages to each other on a bus called the Inter Task Interface
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(ITTI). Due to this design, removing state can be done methodically by examining
each interface, and then each possible message that interface could receive to identify
the state that needs to be extracted. Each thread can then have its initial state filled in
by a call to the database in the constructor, and subsequent state updates can happen
where variables would otherwise be modified.

Unfortunately, I could not complete this part of the implementation due to time con-
straints.
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Evaluation

5.1 Evaluation of design

5.1.1 Goals

Without an implementation to show the actual performance, I can only evaluate the
design by examining how it achieves the goals set out for it in 3.3. The goals of the
system are repeated below with the justification of how the design achieves them.

Firstly, the design should make use of the following Kubernetes features:

• Self-healing cluster.

If a pod crashes in Kubernetes, then the cluster automatically detects this and
will restart it. Similarly, if a node experiences a failure or excess stress, then
Kubernetes can re-schedule pods on that node elsewhere.

• Auto-scaling.

The HPA controller implements auto-scaling in Kubernetes. Creating an HPA
resource that references a set of pods or a deployment enables auto-scaling for
them. The design includes an HPA resource for both the MME and the S/P-GW.

• Function discovery.

It is impossible to know the IP of a pod in a Kubernetes cluster in advance of
its creation; however, Kubernetes has the concept of a “service” that hides pods
behind a DNS name. Services, therefore, enable function discovery as the user
sets their DNS name in advance. The MME has services for each of its incoming
interfaces, which enable discovery of the MME pool.

The other requirements identified for this design were functional requirements to do
with the functioning of the network. Since the design of the message flow in the net-
work is the same as in the standard EPC, these requirements will all be met assuming
a correct implementation.

21



Chapter 5. Evaluation 22

5.1.2 Limitations

Even if the design meets the stated goals in theory, there are still some potential issues
that may have arisen when implemented. These may include performance, difficulties
in implementation or something unforeseen. Alongside these potential limitations,
there are more concrete limitations that we can extract from the design itself.

• Lack of scaling for other components.

The design only includes scaling for the MME and S/P-GW, even though other
components may benefit from scaling at higher user numbers. The advantage of
using Kubernetes is that it allows for scalability, and it would be nice to make
use of that for other components. It is worth noting that it is unknown whether
the other components would benefit from scaling, and this would be an avenue
for future work.

• Expensive to deploy on existing 4G networks.

The requirement for the MME and S/P-GW to be stateless means that existing
implementations without this feature are incompatible with this design without
changes. For operators that have already purchased stateful implementations of
the EPC, this design would be expensive to implement.

5.2 Evaluation of implementation

With the implementation unfinished, it is not possible to quantitatively evaluate it.
Instead, this section will discuss how I would evaluate the implementation should it
have been finished.

5.2.1 Functional tests

Before the performance of the system could be measured, functional tests would have
to be carried out to confirm that the system works as expected. These should show that
the goals laid out in 3.3 have been met.

5.2.2 Performance tests

The performance of the system would be evaluated under two different conditions.
First, the system should be evaluated in a scenario as close to real-world usage as
possible by emulating temporal usage patterns that are seen in real networks. Temporal
patterns can be derived from data-sets similar to that used in [47], which collected
usage data from a tier 1 mobile network in the United States over 32 hours. Secondly,
the system should be evaluated against an extreme volume of traffic to test its limits. It
would be useful to know what user load the system can handle.

These two scenarios could be tested without the use of a physical RAN by setting up
a simulator that works in place of an eNodeB and simulates user traffic. Base station
simulators that are capable of simulating multiple individual UEs already exist [12, 38].
Using a simulator would make it feasible to test with large numbers of UEs.
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Evaluating the system will require comparing it to a non-containerised reference im-
plementation as well as a containerised baseline without the scaling and load-balancing
my design introduces. Some quantitative data that would be useful in this comparison
are listed below.

• Time for completion of MME operations. The MME is an important component
that has been changed by this design, and so evaluating how long it takes to com-
plete various MME operations compared to a reference system would provide a
good measure of its performance.

• Number of concurrent UEs supported. Increasing the number of UEs connected
to the network until an attach message fails or a connected UE loses service
would reveal this number. I would expect my design to increase this number due
to its scaling capabilities.

• Time taken to scale the system. This time could be measured by suddenly in-
creasing the number of UEs/requests on the system so that auto-scaling thresh-
olds were hit and then measuring how long it took for more MMEs to become
active and service requests. It would also be useful to measure the average re-
sponse time before and after the scaling to see if it improves.
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Security

In my original plan for this dissertation, I was going to examine the security aspects of
network slicing on the core network, a novel concept introduced in 5G. Network slicing
is where multiple isolated networks, potentially run by different operators, could use
the same physical infrastructure. This would make deploying a new network cheaper
and faster, and help to accommodate the wide variety of services and requirements that
5G promises to serve. In the context of the core network, slicing can be implemented
with VNFs and CNFs.

Network slicing could lead to hosting the core network in either a shared private cloud
or the public cloud. Both of these scenarios would introduce new attack vectors, and I
planned to identify and implement some novel attacks that could be carried out on the
core network as a result. The idea for deploying the EPC on Kubernetes came from
this motivation since a Kubernetes cluster could feasibly form part of the operator’s
cloud in this scenario.

A mobile network operator has to pay more attention to security than the average com-
pany since it carries some of its customers’ most sensitive data. The following chapter
lays out some considerations for securing a Kubernetes cluster for use with a core
network before introducing the novel attacks I had planned.

6.1 Kubernetes security

Kubernetes is mature software, and some of the biggest technology companies in the
world deploy it in production. Despite this, there are still security considerations to be
taken into account when deploying a cluster.

When deploying in the public cloud, or an off-site private cloud, an operator needs
to take into account standard cloud security issues. Many authors have surveyed this
topic [44, 30, 52].

The official Kubernetes documentation has a useful page on securing a cluster [20].
Containers are harder to secure than standard virtual machines as the operating system
is shared. Any vulnerability in the kernel can then be exploited from a neighbouring
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container. Given the size of data centre servers, this could become a real risk if running
in the public cloud, or even sharing a private cloud as may happen with network slicing.

It is essential to have a good review process for changes in the Kubernetes configura-
tion. A user deploys an app on Kubernetes through a JSON or a YAML configuration
file. These configuration files can contain malicious options, such as requesting an
excessive amount of resources or giving the application administrator privileges on the
cluster. The attacks that follow this section all rely on being able to deploy a configu-
ration file to the cluster without admin oversight.

6.2 Attack Background

A control loop is an important concept for cloud orchestration software such as Ku-
bernetes and OpenStack. A control loop has some desired state, the ability to measure
actual state and the ability to make changes that bring those two states closer together.
Figure 6.1 demonstrates the standard flow of a control loop. First, a control loop will
measure the world state and compare it to the desired state. It will then make appro-
priate changes to affect this state and then wait a set amount of time for these changes
to take effect.

Figure 6.1: Standard control loop structure

A 2018 paper by Baek et al. [10] introduced a side-channel attack on OpenStack that
could detect virtual machine creation and deletion events. It did so through affecting
the local firewall controller that ran on each physical machine, which used a control
loop. Once per iteration of this loop, the malicious VM would make a change to its
firewall rules and measure how long it took for that change to take effect. Since the
control loop would take a minimum time to execute each iteration, the time it took for
the rule change to be applied would be correlated with the load on the controller and
therefore with other events happening such as VM creation and deletion.

Kubernetes also uses control loops as a critical component of its implementation. In
Kubernetes they are named controllers and are used for many tasks; monitoring pod
health, horizontally scaling pods, attaching and detaching storage from pods and more.
Users are encouraged to write new controllers if one does not exist for their use case.
There is even an officially-maintained template controller [9].

The two controllers I have proposed an attack against below are the replication con-
troller and the horizontal pod autoscaler controller (HPA). The replication controller
is responsible for ensuring that the number of pods requested equals the number of
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running pods. The HPA is responsible for measuring the load on pods against some set
target and scaling the number of pods up or down appropriately.

These attacks assume that load on the cluster is correlated with load on the core net-
work running on the cluster. This correlation would enable a third party that was
running on the cluster to glean metrics about the amount of traffic going through the
network at any one time, information that is generally kept private by mobile networks.
A third party could be running on the cluster either through network sharing; a concept
predicted to become more prevalent with the rise of 5G [45], or through gaining access
maliciously.

6.3 Attacking the replication controller

6.3.1 Motivation

The replication controller is responsible for making sure the requested number of repli-
cas of each pod are active at any given time. This means that if an attacker can cause
their application to crash on purpose, then they create a unit of work for the replication
controller, the outcome of which is measurable by their application.

The replication controller runs as part of the controller-manager application on
the master node. All built-in controllers run as threads inside this application. The
replication controller has a control loop period of one second, which means that the
execution of each iteration will take at least one second but may take longer.

Detecting how long an operation takes for the replication controller could give insight
into the load on the controller-manager and master node, thereby giving insight
into the load on the cluster. These values should correlate in a scalable, Kubernetes-
deployed mobile network to user load since user load would lead to automatic scaling,
which would lead to load on the master node and controller-manager.

6.3.2 Attack

The attack on this controller consists of two components, the kill worker and the
listening server as illustrated in Figure 6.2. The kill worker is responsible for
getting restarted and notifying the listening server of the time at which it starts
again. The listening server then compiles this information and attempts to derive
the load on the replication controller from the recorded cycle times.

The replication controller watches ReplicaSets, such as those created by Deployments,
and starts new pods if the number of pods running falls below the requested number. A
pod goes through various life-cycle stages but will be restarted by the controller only
when considered ”failed”. The ”failed” stage is defined by Kubernetes as follows:

“All containers in the pod have terminated, and at least one container has terminated
in failure. That is, the container either exited with non-zero status or the system termi-
nated it.” [18]
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Figure 6.2: Structure of the replication controller attack

Figure 6.3: Kubernetes restart policy affecting the replication controller restart times

Given this definition, a pod with a single container would be considered ”failed” and
restarted if the application in that container exited normally (with an exit code 0). This
mechanism is how the kill worker gets restarted; it will send the time it starts up to
the listening server and then exit.

6.3.3 Evaluation

The results from running this attack with no other load on the cluster can be seen
in Figure 6.3. The graph shows an exponential increase in the time taken to restart
kill worker. This is due to the restart policy Kubernetes has [19]. A pod, when con-
sidered failed, will be restarted after 10 seconds, then 20 seconds and an exponentially
increasing time after that capped at 5 minutes. This back-off resets after 10 minutes of
successful execution.
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Figure 6.4: Structure of the HPA controller attack system

Unfortunately for this attack, this means that to probe the replication controller with
two second resolution, you would need 300 kill workers running (10 minutes / 2
seconds = 600 / 2 = 300). Even 15-second resolution would require 40 instances. Both
of these numbers are too large for the size of the cluster that would run a mobile core
network, making this attack unfeasible in this context.

6.4 Attacking the HPA controller

6.4.1 Motivation

Similar to the motivation for the replication controller attack, the HPA controller also
runs inside controller-manager. The HPA controller seems a more promising target
since the load on the HPA controller will be the scaling load experienced by the cluster,
giving a more direct route to inferring usage statistics.

6.4.2 Attack

The HPA controller checks the average resource usage (CPU, memory or custom) for
every group of pods that it monitors before deciding whether or not that group needs
to be scaled up or down. This process happens every 15 seconds by default. The
HPA controller gets resource usage from a cluster component called metrics-server
which updates by default every minute.

The attack first requests that the HPA monitors a deployment of busy workers, which
are Python servers that can control their CPU usage based on instruction from the
cpu control component. The cpu control will then monitor the number of busy worker
pods that are active through start-up and death messages. It uses this information to de-
cide whether the busy workers should operate with high CPU usage (cause the HPA
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to create more instances) or low CPU usage (cause the HPA to reduce the number of in-
stances). The CPU usage changes every HPA cycle so that the HPA can make a change
every cycle. This information is passed to the busy workers through responses to
their regular heartbeat messages.

The attack system operates in the stages below.

1. First busy worker pod starts up, sending a start-up message with the time to the
metric server and receives an ID in response.

2. The busy worker then sends a heartbeat message and receives a CPU usage
target from the metric server. The CPU usage target will be high since there
is only one busy worker pod.

3. The busy worker then performs a busy wait for HEARTBEAT PERIOD seconds at
the target CPU usage.

4. At the end of this period, the busy worker will send another heartbeat message
and get a new CPU target.

5. Eventually the HPA will start a new busy worker pod which will send a start-up
message to the cpu control. The cpu control then instructs both pods to have
a low CPU usage in response to their heartbeat messages.

6. After the HPA goes round another cycle, it kills the second busy worker due to
the low average CPU usage. When it receives the termination signal, it will send
a message to the cpu control with the current time before exiting.

7. The cycle repeats.

In this way, the number of pods should oscillate every iteration of the metrics-server
control loop and the start-up/death messages reveal how long it took for the HPA to
make the changes in state. This whole process is illustrated in Figure 6.4.

One caveat of this attack is that in Kubernetes V1.17 it requires an extra flag to be
passed to the controller-manager on start-up that disables a cool-off period for
down-scaling the number of pods. This cool-off period would ordinarily prevent a
problem known as thrashing, where pods are continually destroyed and recreated.
Thrashing can cause extra work for a real cluster; however, for our attack, this be-
haviour is desirable. Passing this flag in V1.17 requires administrator access to the
master node. In V1.18, however, this is settable on an individual HPA resource basis
which means the attack can be carried out by anyone with deploy access to the cluster.

6.4.3 Experiments

6.4.3.1 Preliminary experiment without load

Figure 6.5 shows the results from running the HPA controller experiment with no other
load on a two-node cluster. The graph has some interesting features:

• The cycle time is usually measured as around 60s +/- 2 seconds. This time
implies that the Kubernetes metrics-server component is imposing the limit
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Figure 6.5: Preliminary results of the HPA attack

on granularity since it has a cycle time of 60 seconds.

• The graph is roughly a saw-tooth pattern. Since scale-ups and scale-downs are
interleaved, this suggests that scaling up the number of pods takes longer than
scaling down the number of pods. Scale-ups take longer because the pod start-up
time includes creating a new container, starting Python and running the script to
the point it records the time. This extra time could be measured and accounted
for in a final implementation.

• There are spikes in the graph that are roughly double the average cycle time. The
metrics-server recording the resource usage before the cpu control has had
a chance to change it causes this. That would lead the HPA to act when it receives
updated information from the metrics-server a full cycle later.

6.4.3.2 Experiments with load

metrics-server
resolution (s)

Downscale
period (mins) Avg cycletime (s)

Correlation
coefficient

15 30 35.6 0.29
60 90 61.6 -0.30

Table 6.1: Results from HPA experiment with load. Correlation coefficient calculated on
mean cycle times of each number of systems running in parallel.

After running the experiment with no additional load, I ran two experiments that ran
10 of the cpu control/busy worker system in parallel to place load on the HPA con-
troller. One experiment ran with a metrics-server resolution of 15 seconds and the
other with a resolution of 60 seconds. The experiments then progressively killed the
instances of the system until just one remained to see the effect of varying the load.
The cycle times recorded by the one surviving instance are summarised in table 6.1
and Figure 6.6.



Chapter 6. Security 31

Figure 6.6: Results of HPA experiment with load

6.4.4 Evaluation

The results of the experiments run with the HPA attack show that it is unlikely to
work in the context of a mobile core network. If the load on the HPA controller was
correlated with cycle time recorded by the cpu control component, then we would
expect to see a strong correlation coefficient; however, table 6.1 shows that for both
resolutions tried, there is only a weak correlation between the cycle time and the load.
For a resolution of 60 seconds, the correlation is even negative, which suggests that
factors other than load are affecting the cycle time much more strongly.

It is possible that if a significantly higher number of systems were running in parallel
and putting load on the HPA controller, then we would see a correlation between cycle
time and amount of load. However, more parallel systems would not reflect the amount
of load that a typical mobile core network would generate. Scaling events in a mobile
network would be infrequent, only happening when user load significantly grew or
dropped, potentially a few times a day. The load in the above experiments was between
one and ten requests every 15 seconds, which may already be greater than we would
see from a mobile core.



Chapter 7

Conclusion

7.1 Conclusion

In this report, I introduced a new design for orchestrating the EPC with Kubernetes
and partially implemented it. I also introduced two potential side-channel attacks on
Kubernetes and demonstrated that they would not work in the context of a mobile
core network. Through this research, I hope to have demonstrated that Kubernetes
and cloud-native network functions are an attractive avenue of exploration for mobile
network operators when upgrading their networks.

7.2 Future work

This report leaves many potential avenues for future work, with a few listed below.

• Full implementation of the design outlined in chapter 3. Once a prototype was
implemented, it would be interesting to compare its performance with the current
implementation as well as a non-containerised version.

• Examining the effects of allowing other components to scale. In the design for
4GKube, only the MME can automatically scale, but scaling other components
may also bring benefits.

• An equivalent work for the 5G core. The EPC will lose its relevance much
faster than the 5G core, and fledgeling projects are providing an open-source
implementation of the 5G core, making this feasible.

• Increasing the scale of experiments for the attacks in chapter 6. The attacks were
deemed unfeasible in part due to the scale of a core network. The attacks may
work well in a larger scale context, potentially outside of telecoms.

• Examining other orchestration tools. Kubernetes is not the only container or-
chestration platform available. Others include OpenStack [46] and Docker Swarm
[17] and may bring unique benefits of their own.
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